- Features
- Models
- Downloads
- Applications
- Related Products
- Back To Spectroscopy
- Back To Optics
- Back To Hyperspectral
- Back To Cameras
- Back To X-Ray
- Back To Light Measurement
- Back To Characterisation
- Back To Electron Microscopy
- Back To Magnetometry
- Back To Ellipsometers
- Back To Cryogenics
- Back To Lake Shore
Montana Instruments CryoAdvance™ Optical Cryostat
CryoAdvance™ takes the next step in advanced materials and quantum device characterisation.
- Variable temperature control across the entire range <3.2K – 350K.
- Cryogen-free/closed-cycle – Avoid expense, hassle, and supply challenges with LHe.
- Push button cooling – Simply input the target temperature and press COOLDOWN.
- Turn-key equipment solution – Minimal installation demands get users up and running faster.
- External control – Galaxy software utilises intuitive, flexible touchscreen control.
- REST AP – Automate temperature setpoints, stepping, and ramping.
A foundational piece of gear for your laboratory
- Touchscreen user interface – displays real-time temperature status, temperature stability, and vacuum pressure readouts.
-
Optical + DC + RF – high optical access to the sample and ability to enable the most common techniques of sample interrogation.
-
Modular design – facilitates understanding of the product configuration and helps users arrive faster at a solution that fits their needs.
-
Vibration damping – configurable, low-vibration, variable temperature environment to accelerate time and achieve real results.
MODELS
PERFORMANCE
Temperature Range: Measured from platform 3.2K – 350K
Sample Temperature Stability (P-P): Measured on damped sample mount at base temperature <10 mk
Vibrational Stability: Peak to peak <5 nm
Cool Down Time to 4.2K: Typical performance ~2 hours
Cooling Power to 4.2K: 130 mW
OPTICAL PROPERTIES
Optical Access: 5 optical ports (4 radial + 1 overhead)
Acceptance Angle: Sample at centre of platform 60′ full angle
INTERFACING
Electrical Access: 20 DC connections
Interface Side Panels: 1x configurable – RF. DC, fibre options available Dual RF +25 DC (included)
DIMENSIONS
Sample Space: Diam 53 mm x 100 mm
Beam Height: From table to surface 140 mm
OPTIONS
Positioning: Manually adjustable, nanopositioner
High NA Integration: Vacuum compatible objective vertically mounted in sample space
PERFORMANCE
Temperature Range: Measured from platform 3.4K – 350K
Sample Temperature Stability (P-P): Measured on damped sample mount at base temperature <15mk
Vibrational Stability: Peak to peak <15 nm
Cooling Down Time to 4.2K: Typical performance ~3 hours
Cooling Power to 4.2K: 90 mW
OPTICAL PROPERTIES
Optical Access: 5 optical ports (4 radial + 1 overhead)
Acceptance Angle: Sample at centre of platform 27.4′ full angle
INTERFACING
Electrical Access: 25 DC connections
Interface Side Panels: 5x configurable – RF, DC, fibre options available Quad RF (included)
DIMENSIONS
Sample Space: diam 100 mm x 116 mm
Beam Height: From table to surface 140 mm
OPTIONS
Positioning: Manually adjustable, nanopositioned
High NA Integration: Vacuum compatible objective horizontally mounted in sample space
Downloads
Supplier Info
APPLICATIONS
Quantum Computing in Cryogenic Systems
Quantum computing promises to deliver major advances in a wide variety of fields including simulations of the natural world, virtual quantum experiments, quantum cryptography, data communication systems, and new pharmaceutical drug search and design. These exciting research frontiers in quantum computing rely on two hallmarks of quantum physics, namely, the superposition of states and quantum interference.
Quantum Networking
Montana Instruments has developed a line of cryogenic products to meet the needs of quantum networking researchers and industry pioneers. Challenges in the field arise from single photon emission and detection, increasing transmission distances between nodes, and maintaining quantum memories. Several technologies are forging ahead with promising results, including diamond NV centres, spin/quantum dots, trapped atoms, and trapped ions.
Quantum Research
Montana Instruments offers solutions for multiple research applications, including cutting-edge techniques and breakthrough technology developments for a variety of colleges, universities, and research labs around the globe. Montana Instruments enables the quantum materials research community with state-of-the-art performance, high reliability, and user-friendly product line. Our closed-cycle optical cryostats offer turn-key functionality and automated control in easy-to-use variable temperature systems, and standardized product offerings for researchers.
Diamond NV Centres in Cryogenic Systems
Nitrogen-vacancy (NV) defect centres in diamond have recently exploded onto the scientific research scene. NV centres are extremely stable and have unique optical properties that enable a wide range of applications. In the field of quantum information science, NV centres may act as single photon sources for quantum computing applications. NV centres have also been demonstrated as quantum assisted sensing devices to resolve nanoscale variations in magnetic fields, electric fields, strain, temperature, and pressure. In the biological realm, NV centres have proven to be excellent biomarkers with unlimited photostability and low cytotoxicity.
Single Photon Emitters
The Sparrow Quantum Single-Photon Chip requires a suitable cryostat with optical access for effective use. Montana Instruments provides such a solution with the CryoOptic® product line. This application uses an integrated system including the interface optics for exciting the chip and efficiently extracting single photons. It also describes an optical filter and a correlation setup to demonstrate the single-photon nature of the emission. The complete setup is mounted in an enclosure with a compact footprint.
Spintronics: Magneto-Optical Kerr Effect (MOKE)
The Magneto-Optical Kerr Effect (MOKE) and the Faraday effect describe the change in polarisation of incident light as it is reflected (or transmitted) by a magnetic material. These effects can be used for modulating the amplitude of light and form the basis of optical isolators and optical circulators that are integral to optical telecommunications networks and various laser applications. MOKE was widely used as an optical readout technique for logic state of magnetic storage media (hard disk drives), and the MOKE technique offers promise for real-time readout of logic states in new magnetic memory technologies such as MRAM.
Mitigating Thermal And Vibrational Noise
Many researchers employ low temperatures in their optical cavity experiments to reduce phonon broadening and enable material observations inaccessible at room temperature. For researchers studying optical cavities, there are experimental considerations that extend beyond simply achieving cryogenic temperatures. Factors such as temperature stability, ultra-low vibrations and accelerations, and the demands of sustaining a cryogenic environment for days, weeks, or even months deserve heightened importance when working at low temperatures.
Considerations For Cryogenic AFM Operation
Cryogenic environments increase the Q-factor of an AFM dramatically, which can amount to an enhanced sensitivity if correctly implemented. This typically requires the operator to understand how the resonator’s properties (amplitude, phase, resonance frequency) change in both magnitude and polarity, the pitfalls that can occur, and how they are manifest in the measurement. While an increase in sensitivity seems desirable, things that were literally ‘in the noise’ in ambient conditions can become formidable at low temperatures.
Variable Temperature Raman And PL Micro-Spectroscopy
Variable temperature Raman analysis of two-dimensional quantum materials is complicated by the limited luminescence (low signal-to-noise ratio) due to their low absorption rate, low conversion efficiency, and often a low laser input power (to avoid heating), especially in low temperature environments. At cryogenic temperatures, acquiring a signal from the material requires either long integration times or complicated optical setups aimed at improving the collection efficiency.
Variable Temperature Raman Micro-Spectroscopy
Compared to other 2D materials, Raman spectroscopy of all carbon-based nanomaterials offers a wealth of information wrapped within the spectral data. In room temperature studies, thermal fluctuations and lattice vibrational modes cause line broadening and local environmental averaging of spectra, which limits the amount of information that can be gleaned from the data. In this case, only strong perturbations of the sample will be sufficient to shift these broadened optical bands. At low temperature, however, spectral lines are narrower and much more insight can be obtained.
Optical Characterisation Of Low-Dimensional Materials
The study of low-dimensional materials is particularly interesting for their potential applications in quantum information, 2D optoelectronics, and bio-sensing. Temperature-dependent measurements are critical for observing interesting sample characteristics. Exploring phase transitions, molecular thermal activities, and crystal structure changes requires precise control over the sample temperature and measurement environment.