theta-SE

Capabilities

The theta-SE is a push-button spectroscopic ellipsometer for characterizing thin film uniformity. It features advanced ellipsometry instrumentation in a compact package at an affordable price.

Why a theta-SE?

Fully Integrated

The theta-SE comes equipped with 300 mm sample mapping, small-spot measurement beam, fast sample alignment, look-down camera and our latest Dual-Rotation ellipsometer technology. The theta-SE has everything you need to measure the spatial uniformity of your film thickness and optical properties.

High Speed

Sample throughput is optimized by using fast point-to-point translation, high-speed sample alignment and Dual-Rotation ellipsometer technology for continuous data collection.

Compact

The patent-pending, Dual-Theta rotation stage enables full, 300 mm mapping in a small, table-top instrument. The instrument footprint is only slightly larger than a 300 mm wafer.

User Friendly

Automated data analysis and built-in reporting enables push-button operation and quick access to measurement results

Affordable

The theta-SE delivers the power of spectroscopic ellipsometry and 300 mm uniformity mapping at a reasonable price.

Features

The theta-SE combines many of the latest advancements in ellipsometry instrumentation to provide uniformity maps of your thin films. Spectroscopic ellipsometry is perfect for measuring film thickness and optical constants. The theta-SE scans the uniformity of these film properties over your entire wafer.

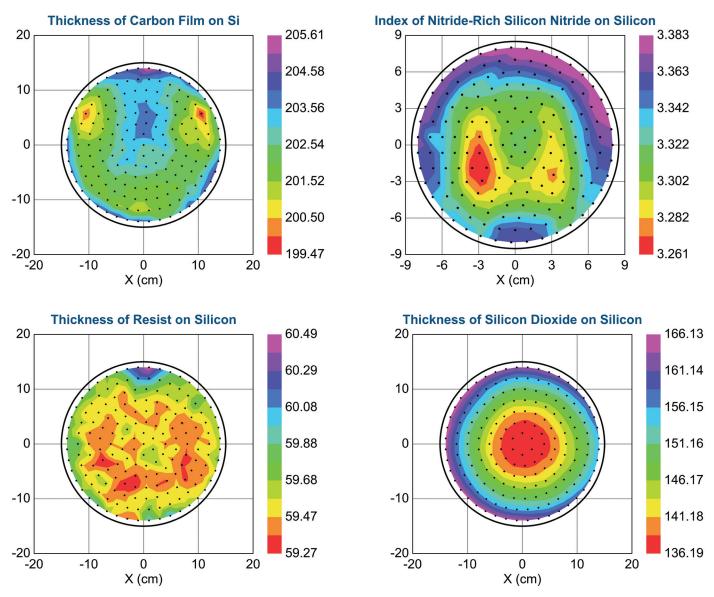


Figure 1. Thickness and refractive index uniformity maps

Ellipsometry Advantages

Sensitivity: Spectroscopic ellipsometry measurements provide sensitivity to a variety of material properties such as composition, conductivity, surface conditions, etc. In addition, ellipsometry is sensitive to thickness changes at the sub-angstrom level. The theta-SE leverages the sensitivity of ellipsometric measurements in combination with high-speed mapping functionality to provide non-destructive sample characterization across a sample.

ACCURACY: Spectroscopic ellipsometry measurements calculate the change in polarization of light reflecting off a sample. This change in polarization is traditionally described with two measured parameters, Psi and Delta. In addition to providing two measured parameters at each wavelength, this self-referencing technique provides excellent measurement accuracy.

Dual-Theta Mapping Translation: Our patent-pending translation stage enables ellipsometry measurements across samples up to 300 mm diameter with a small, table-top instrument. The compact ellipsometer heads and integrated electronics all result in a significantly reduced instrument footprint.

Focused Spot: A focused measurement beam parallel to the wafer edge produces excellent edge exclusion.

Fast Camera Alignment: The fast camera alignment uses machine vision and image recognition to precisely align the sample in a fraction of the time compared to traditional alignment techniques. The camera also provides sample visualization to locate specific areas of interest for measurement.

Dual-Rotation Technology: Measurement times for multi-point maps are minimized by reducing the translation time between points, using our fast camera alignment and taking advantage of Dual-Rotation technology that captures high-accuracy measurements in half the time.

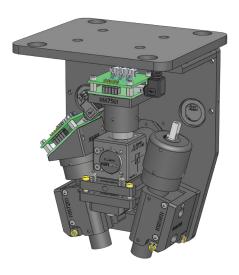


Figure 2. Patented camera-based alignment

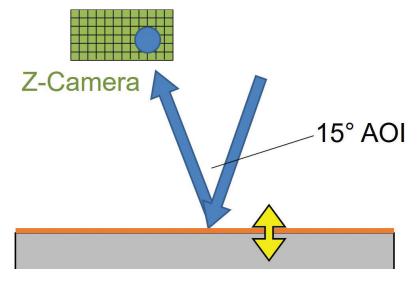


Figure 3. Schematic demonstrating the camera-based-alignment principle

Automated Data Analysis in CompleteEASE: CompleteEASE is equipped with userfriendly features for surface uniformity measurements. Recipes that describe the data acquisition, measurement location and data analysis allow push-button operation.

Substrate Dimensions Circle	. (cm): 30.00000 Draw Wafer Notch	
Point List (cm) 1: 0.0000, 0.00000 2: 1.73205, -1.00000 3: -0.00000, -2.00000 4: -1.73205, -1.00000 5: -1.73205, 1.00000 6: 0.00000, 2.00000 7: 1.73205, 1.00000 8: 4.00000, 0.00000 9: 3.54182, 1.85889 10: 2.27226, 3.29194 11: 0.48215, 3.97084 12: -1.41842, 3.74006 13: -2.99404, 2.65249 14: -3.88377, 0.95726 15: -3.88377, -0.95726 16: -2.99404, 2.65249	Cartesian <u>G</u> rid Fill Polar Grid Fill Line Fill Point Commands: <u>A</u> dd Point <u>E</u> dit Point <u>Move Up</u> <u>Move Down</u> <u>D</u> elete Point <u>D</u> elete All <u>Paste From Clipboard</u>	
Translate in R-Theta If Possible		

Figure 4. Software interface for creating uniformity map routines

Specifications

Spectral Range

400 nm to 1000 nm, 190 wavelengths

System Overview

- Dual-Rotation optical design
- CCD detection
- Fast sample alignment
- Focused beam
- 300 mm mapping stage

Mapping Overview

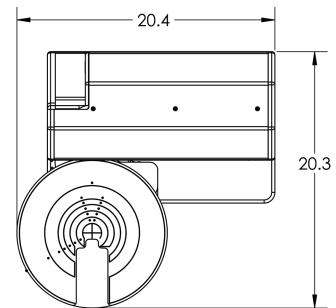
Wafers up to 300 mm diameter

Data Acquisition Rate

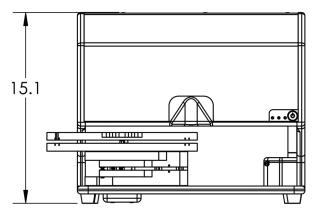
- 0.3 sec. [Fastest]
- 1-2 sec. [Typical]

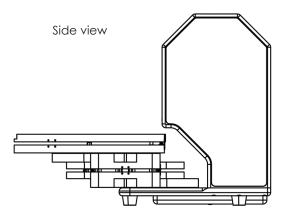
Spot Size

Nominal: 250 x 600 μ m on sample


Data Types

Spectroscopic ellipsometry and advanced g-SE or MM-SE


Angle of Incidence


65° fixed for all measurements

Front view

*CAD dimensions shown in inches.