ADR Kit for PPMS®

Quantum Design introduces a compact Adiabatic Demagnetization Refrigerator (ADR) designed for the PPMS platform as co-development work with the Institute for Materials Research, Tohoku University Japan. The ADR extends the PPMS temperature range down to \sim 100 mK from room temperature in less than 3 hours, and holds temperature below 1.9 K for more than 2 hours. This enables DC resistivity and electrical transport measurements down to \sim 100 mK.

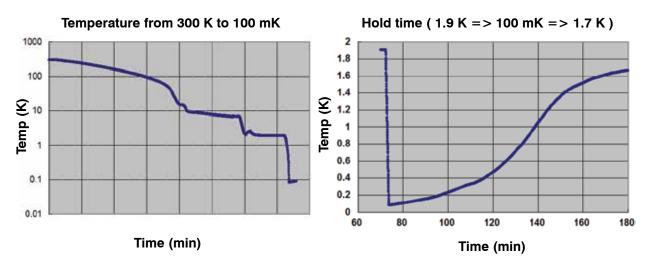
Features

- Extends the PPMS temperature range to ~100 mK in 3 hours
- Compatible with QD PPMS, EverCool II and DynaCool
- DC Resistivity and Electrical Transport measurements
- Two samples can be measured simultaneously
- Simple operation principle without mechanical movement

PPMS Requirements

- High vacuum option
- DC Resistivity (ETO puck)

Specification


Temperature range	300 K to 100 mK (typical - guaranteed spec. = 150mK)
Time to base temp	3 hours (from room temp. to ADR base temp.)
Temperature sensor	1000 Ω Ru ₂ O
Number of leads	8 (Allows for two samples to be measured simultaneously)
Sample mounting	PPMS He³ DC resistivity sample stage
System requirement	High vacuum option DC resistivity

ADR Process

1. Set sample puck in ADR and insert into PPMS	
2. Cool down PPMS to 1.9K	
3. Apply 3 T magnetic field	
4. Vacuum PPMS to high-vacuum state	

- 5. Set zero magnetic field
- 6. Temperature decreases to \sim 100 mK

Temperature sweep data

